“Python”的版本间的差异
来自Wiki.Citydatum
小 |
小 |
||
第31行: | 第31行: | ||
== 上手 == | == 上手 == | ||
+ | === 网络爬取 === | ||
+ | Python3.x的标准库urllib,将Python2.x的标准库urllib,urllib2功能进行了整合,提供网络爬取的相关功能。一个简单的抓取基本操作如下: | ||
+ | <pre> | ||
+ | from urllib import request #Python3.x下引用库,Python2.x下引用urllib2,通过urllib2.urlopen()调用 | ||
+ | |||
+ | file = request.urlopen("http://wiki.citydatum.com") | ||
+ | |||
+ | data = file.read() #读取全部页面,数据格式为bytes类型 | ||
+ | |||
+ | data_str = data.decode('utf-8') #解码,转换为str类型 | ||
+ | |||
+ | fhandle=open("./1.html","wb") #将爬取的网页保存在本地 | ||
+ | fhandle.write(data) | ||
+ | fhandle.close() | ||
+ | </pre> | ||
== 参考 == | == 参考 == |
2018年5月27日 (日) 16:52的版本
Python是一款自由、开源的高级解释性计算机编程语言,遵循 GPL(GNU General Public License)协议。Python语法简洁清晰,具有丰富和强大的库,能够把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。在IEEE发布2017年编程语言排行榜中,Python高居首位[1]。
概况
发展历程
- Python是一种高级编程语言,由荷兰人Guido van Rossum创建并于1991首次发布。
主要特点
- Python是一种解释性语言,特别强调代码的可读性,最典型的例子就是Python用行缩进来区分代码块,而不是其他编程语言中较为常见的大括号。
- Python常常被称为胶水语言,能将其他编程语言制作的各种模块连接在一起。
库
Python拥有一个强大的标准库,提供了系统管理、网络通信、文本处理、数据库接口、图形系统、XML处理等额外的功能。Python标准库提供的工具适用于多种类型的任务,如:针对面向互联网的应用,提供了对MIME、HTTP等标准格式与协议的支持;针对图形用户界面(GUI)应用,提供了关系数据库连接、随机数生成、任意位数小数算法支持、正则表达式操作、单元测试等各类模块。Python标准库命名接口清晰、文档良好,很容易学习和使用。
Python社区提供了大量的第三方模块,使用方式与标准库类似。它们的功能无所不包,覆盖科学计算、Web开发、数据库接口、图形系统多个领域,并且大多成熟而稳定。第三方模块可以使用Python或者C语言编写。截止2018年3月, Python官方第三方资源库Python Package Index (PyPI)已收录超过13万项各类功能包。
应用
Python灵活且各类爬虫库、数据分析库、数据可视化库较为丰富,很适合用于做数据抓取的主体架构,并基于这些数据做分析及可视化[2],可将互联网上越来越丰富的数据为各种类型的城市规划与研究所用。
- 交通:抓取12306火车、机票网站数据;搭建各个机场的实时流量图;
- 财经:抓取雪球及各类财经网站数据;
- 住宅:58、抓取搜房、链家等房屋租售数据;
- 自然资源:天气数据,环境质量(PM2.5)数据;
- 地点舆情:抓取新浪微博的用户发言及舆论数据;
- 科技行业:抓取各应用商店的App的下载量及评论数据;追踪各门类App下载量热点,热点行业走势;
- 服务行业:抓取大众点评及美团网的餐饮及各类线下门店消费及评价情况;绘制城市早晚高峰时段(某类)人群出行的热点图;
上手
网络爬取
Python3.x的标准库urllib,将Python2.x的标准库urllib,urllib2功能进行了整合,提供网络爬取的相关功能。一个简单的抓取基本操作如下:
from urllib import request #Python3.x下引用库,Python2.x下引用urllib2,通过urllib2.urlopen()调用 file = request.urlopen("http://wiki.citydatum.com") data = file.read() #读取全部页面,数据格式为bytes类型 data_str = data.decode('utf-8') #解码,转换为str类型 fhandle=open("./1.html","wb") #将爬取的网页保存在本地 fhandle.write(data) fhandle.close()